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Abstract

Forest monitoring requires more automated systems to analyse the large amount of remote sensing data. A new method of change detection is
proposed for identifying forest land cover change using high spatial resolution satellite images. Combining the advantages of image segmentation,
image differencing and stochastic analysis of the multispectral signal, this OB-Reflectance method is object-based and statistically driven. From a
multidate image, a single segmentation using region-merging technique delineates multidate objects characterised by their reflectance differences
statistics. Objects considered as outliers from multitemporal point of view are successfully discriminated thanks to a statistical procedure, i.e., the
iterative trimming. Based on a chi-square test of hypothesis, abnormal values of reflectance differences statistics are identified and the
corresponding objects are labelled as change. The object-based method performances were assessed using two sources of reference data, including
one independent forest inventory, and were compared to a pixel-based method using the RGB-NDVI technique. High detection accuracy (>90%)
and overall Kappa (>0.80) were achieved by OB-Reflectance method in temperate forests using three SPOT-HRV images covering a 10-year
period.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Forest ecosystems have never been so affected by human
pressure than currently (FAO, 2001). The rapid conversion or
degradation of forest environments is thus of important
international concern. Forest monitoring mainly focuses on
detecting and estimating the land conversion rate and, more
recently, on assessing carbon stocks in the forest ecosystem.
Operational systems for monitoring and updating forest maps
are thus needed for many applications such as forest
management, carbon budgeting and habitat monitoring (de
Wasseige & Defourny, 2004; Foody, 2003; Sader et al., 2001).

Satellite remote sensing is widely used to detect forest
change and update existing forest maps. Many change detection
techniques have been developed since the early days of earth
observation. They can be broadly grouped into three categories:
(1) visual interpretation, (2) pixel-based methods and (3) object-
based approaches.

Visual interpretation using single or multidate images
requires human expertise (computer-assisted or not) for
delimiting and labelling zones that are considered as changed.
This method can make full use of an analyst's experience and
knowledge. Texture, shape, size and patterns of the images are
key elements for identification of land cover change through
visual interpretation (Lu et al., 2004). Although this technique
is time-consuming and requires skilled analysts, visual
interpretation is still widely used (Asner et al., 2002; Sunar,
1998). Currently, there is no automatic image processing able
to grasp the high complexity of land cover changes made by
the combination of several factors such as the stage or the size
of the change area. That is why change maps produced for
large-area projects with many land cover changes classes like
CORINE Land Cover 2000 (Büttner et al., 2002) or Forest
Resources Assessment (FAO, 2001) were still based on this
technique.

Digital pixel-based change detection methods provide more
quantitative and repeatable information compared to visual
interpretation. Several authors (Coppin & Bauer, 1996; Lu
et al., 2004) have reviewed pixel-based methods but theirs
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performances are rarely compared to each other. In this category
of techniques, the multidate classification or composite analysis
that deals with different satellite images in one aggregated
analysis is known to be straightforward (Hall et al., 1984). As a
single classification is performed in one step, it avoids
combining respective inaccuracies that are common with
postclassification comparison procedures. Sader et al. (2001)
have stacked the NDVI of 3 dates in a red, green and blue
composite to perform an unsupervised classification. This
specific multidate classification denoted as RGB-NDVI avoids
the need of setting a predefined histogram threshold, but it
requires training sample data to label classes. Hayes and Sader
(2001) found the RGB-NDVI method to be more accurate than
NDVI image differencing and principal component analysis.
Despite their good change detection accuracy, many of these
techniques are considered scene-dependent (Lyon et al., 1998;
Rogan et al., 2003). The thresholding step or classification
process developed from one set of images cannot be directly
applied to other regions with other satellite data. Moreover,
more complex procedures combining several methods have also
been proposed but they become dedicated to specific changes
such as urban expansion, conifer mortality and transitions from
tundra to boreal forest (Li & Yeh, 1998; Macomber &
Woodcock, 1994; Silapaswan et al., 2001). Finally, the main
drawback of pixel-based methods is the “salt and pepper” effect
in the resulting maps. This is due to the random variation of the
sensor's response, but also to an intrinsic characteristic of the
land cover element itself (Lobo, 1997). Indeed, the useful
spatial, or contextual, information between the values of
proximate pixels is most often ignored (Atkinson & Lewis,
2000; Townshend et al., 2000).

More recently, object-based methods have been proposed for
forest change detection to combine the contextual analysis of
visual interpretation with the quantitative aspect of pixel-based
approaches. Instead of analysing pixels independently of their
location, similar contiguous pixels are grouped into objects.
Initially, object boundaries specified by forest stand delineation
vectors were derived from a Geographic Information System
(GIS) (Coppin & Bauer, 1995; Heikkonen & Varjo, 2004;
Kayitakire et al., 2002; Varjo, 1996; Walter, 2004; Wulder et al.,
2004). The interest for object-based methods has increased with
the improvements in image segmentation techniques (Flanders
et al., 2003; Mäkelä & Pekkarinen, 2001). Image segmentation
is the division of the satellite image into spatially continuous
and homogeneous regions, hereafter named as objects. The
main advantage of object-based methods is the incorporation of
contextual information in the change analysis (Flanders et al.,
2003). Moreover, the segmentation reduces the local spectral
variation inducing better discrimination between land cover
types (Lobo, 1997). However, although the object delineation
remains crucial, a limitation is the definition of a Minimum
Mapping Unit (MMU). Defined initially to control the visual
interpretation process (Saura, 2002), this parameter defines the
minimum size of an object as calculated by its number of
included pixels (Mäkelä & Pekkarinen, 2001). So, change areas
smaller than this constraint could not be detected by the change
analysis.

Because of the enormous amount of remote sensing data to
analyse, operational monitoring systems require more automat-
ed methods. An efficient change detection procedure should be
objective, easy to use, and should require a limited number of
parameters for extracting changes. Indeed, the huge amount of
work that has been done in change-thresholding of the
histograms of vegetation-difference-images clearly warrants
the reduction of human intervention in the process (Bruzzone &
Prieto, 2000; Fung & LeDrew, 1988; Jin & Sader, 2005; Le
Hégarat-Mascle & Seltz, 2004). By using an automated
procedure, this time-consuming human interpretation could
thus be limited to the class labelling of the identified changed
areas. However, in spite of increasing demand connected with
international concern about forests, very few automatic
algorithms have been proposed in the literature (Rogan &
Chen, 2004). Taking advantages of object-based techniques,
two methods have already been developed but they suffered of
low detection performances. The first one is the unsupervised
technique of Häme et al. (1998) which is based on change
vector analysis. By analysing groups of pixels to reduce the
“salt and pepper” effect, this technique does not take advantage
of image segmentation. The second one is based on a
presegmentation step coupled with an unsupervised ISODATA
classification (Saksa et al., 2003). This technique failed to
correctly extract clear-cut areas because the segmentation and
the clustering algorithm were not appropriate (MMU too large
and classification based on object difference means).

This research aims to develop a new method to extract land
cover changes in forest by taking advantages of image
segmentation, image differencing and stochastic analysis of
the multispectral signal. Using high spatial resolution images,
this method was sought to be scene-independent and easy-to-
use. This study also aims to test this new approach on a multi-
year SPOT-HRV data set and to compare its performances to the
pixel-based method using the RGB-NDVI technique.

2. Study site and data

The study site covers more than 1800km2 and is located in
Eastern Belgium. The forests that cover 40% of the total area
include both deciduous and coniferous stands, with the last type
being dominant. Land cover changes are more frequent and
cover larger areas in conifer stands because they are rather
monospecific and have a shorter exploitable age. Whereas
different forest management systems coexist, many clear
cuttings occurred in coniferous stands on areas ranging from
0.1 to more than 10ha. After clear-cuttings, the forest
regeneration can either rely on natural recolonisation or young
tree plantation. The distinction between these two regeneration
techniques is not possible using SPOT-HRV data.

Three cloud-free multispectral SPOT-HRV images were
acquired over a decade and are considered as our multidate data
set. Near-anniversary dates during the phenological peak season
were selected in order to reduce the seasonality effect. The
acquisition dates for these images were August 7th 1992
(XS92), July 24th 1995 (XS95) and September 14th 2003
(XS03), respectively from SPOT-2, -3 and -5 satellites. The

2 B. Desclée et al. / Remote Sensing of Environment 102 (2006) 1–11



difference in the spatial resolution between images (20m for the
first two and 10m for the last one) was corrected by bilinear
interpolation resampling of the last image (XS03) to 20 m.
Moreover, because the ShortWave InfraRed band was only
available for the last acquisition, this spectral band was not used
in the study. The 3 spectral bands, respectively Green (G), Red
(R) and Near-Infrared (NIR), were combined for the 3 dates in a
9-band multidate data set.

Ancillary data included a forest inventory data layer, GIS
topomaps, aerial photographs, the 1990 CORINE Land Cover
(CLC) map and a Digital Elevation Model (DEM). The 2003
updated forest inventory of the state-owned forest was provided
in GIS vector format including stand properties, such as the
species composition and the date of the last planting. Forest
stands were delineated from aerial photographs with a MMU of
less than 0.1 ha and stand characteristics were collected on the
field. This independent data source was used as reference for the
accuracy assessment. Topographic maps of 1:10,000 scale were
used for the field survey. A set of digital and orthorectified aerial
photographs of 1:20,000 scale acquired in 1997–1998 was also
available for the selection of very precise ground control points
(GCP) for accurate coregistration and validation. The CLCmap,
as produced by classification of Landsat images in 1990, served
as a coarse independent forest mask which was then visually
improved. Finally, a 30m DEM was resampled at 20m by
bilinear interpolation for the orthorectification of the satellite
images.

Two preprocessing steps were required for a meaningful
comparison of the satellite images. First, a coregistration
between the three images was carried out with high precision
to avoid misregistration errors inducing false change alerts.
Depending on the satellite image, a set of 18 to 26GCPs spread
over the whole study area were selected from aerial photographs.
Orthorectification using the DEM was then applied on each
image. The Root Mean Square Errors (RMSE) were respectively
0.51, 0.66 and 0.39 pixels. Secondly, as significant radiometric
differences between images (due to geometry of acquisition and
sensor calibration) could prevent the comparison of absolute
reflectance values in multitemporal analyses (Häme, 1991), the
radiance of images was radiometrically corrected into top-of-
atmosphere (TOA) reflectance using the calibration parameters
of Spotimage (Lillesand & Kiefer, 2000). In order to apply the
RGB-NDVI method, the Normalized Difference Vegetation
Index (NDVI) was calculated from the TOA reflectance
channels (NIR and R) respectively for each image where

NDVI ¼ ðNIR−RÞ
ðNIRþ RÞ

ð1Þ

From the 3 satellites images, two multidate data sets were
produced: (i) the 3 NDVI bands, and (ii) the 9 TOA reflectance
channels.

3. Object-based methodology

The proposed change detection method is object-based and
statistically driven. This technique, presented in Fig. 1, includes

3 steps resulting in the production of change maps. First, the
multidate segmentation partitions the whole multi-year image
into objects. Second, the object multidate signatures are
extracted from each object to characterise the object spectro-
temporal behaviour. Third, the multivariate iterative trimming is
a statistical procedure to identify changed objects based on
theirs object signatures.

Over the time span covered by a sequence of satellite images,
the change detection algorithm aims to distinguish “changed
objects”, corresponding to areas with (land cover) change, from
“unchanged objects” (i.e., regular forest growth stands). The
proposed algorithm relies on three basic assumptions: (i)
changes are rare and concern a small part of the total study
area, (ii) unchanged objects exhibit similar reflectance differ-
ences and (iii) changes induce large surface reflectance
variation and abnormal reflectance differences. Assuming
these hypotheses hold, the algorithm measures for each object
the surface reflectance variation over time and compares it
between objects. Object exhibiting abnormal reflectance change
over time can thus be statistically identified and labelled as
changed areas. It is worth noting that the proposed basic
assumptions are most often respected for forested areas, even if
the change proportion clearly depends on the time interval
between observations as well as on the region size. As a
confirmation of the second assumption, Liang et al. (1997) and
Coppin and Bauer (1994) take advantage of unchanged forests
as stable targets for radiometric calibration between multidate
images.

3.1. Multidate segmentation

Image segmentation is the process of partitioning an image
into groups of pixels that are spectrally similar and spatially
adjacent, by minimizing the within-object variability compared
to the between-object variability. The object delineation has
been achieved here using a general segmentation algorithm
based on homogeneity definitions, in combination with local
and global optimisation techniques, as implemented in the e-
Cognition commercial software (Baatz & Schäpe, 2000). The
segmentation algorithm is a region-merging technique which
fuses the objects according to an optimisation function given by
Eq. (2), with

wspectral

X
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where nb is the number of spectral bands, σb is the within-object
variance for the spectral band b, l is the object border length, np
is the number of pixels and lr is the shortest possible length
given the rectangle bounding the pixels (although each band b
can potentially have a specific weight, referred to as wb, the
same weight has been considered for all bands in this study).
This function also includes three kinds of user-defined
parameters or weights. The spectral parameter wsp, trading
spectral homogeneity vs. object shape, is included in order to
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obtain spectrally homogenous objects while irregular or
branched objects are avoided. The compactness parameter
wcp, trading compactness vs. smoothness, adjusts the object
shape between compact objects and smooth boundaries. Finally,
corresponding to the threshold of heterogeneity, the scale
parameter hsc controlling the object size has been selected in
order that the minimum object size match to the Minimum
Mapping Unit (MMU).

Traditionally, the segmentation process has only been
applied to one single satellite image (Flanders et al., 2003;
Mäkelä & Pekkarinen, 2001; Wulder et al., 2004). In this study,
objects are defined in a single operation from the whole set of
spectral bands using all sequential images together. This
approach, hereafter denoted as multidate segmentation, relies
on spatial, spectral and temporal information to delineate
suitable objects, so that pixels that are spectro-temporally
similar in a nb-dimensional space are grouped together, where
nb refers to the number of different spectral bands for the set of
sequential images.

3.2. Object multidate signature

In order to compare the multidate evolution of the spectral
signal, the reflectance of the three sequential (dates 1, 2 and 3)
satellite image was subtracted pair-wise for all pixels belonging
to the same object. Thus, two difference images were computed
from the successive observations, i.e., dates 2–1 and dates 3–2.

For each object delineated by the previous multidate
segmentation, the distribution of the reflectance difference
values was summarized by a multidate signature. This signature
includes two descriptive statistics, i.e., the mean (M) and the
standard deviation (S), corresponding respectively to a measure
of surface reflectance difference and heterogeneity. As these
differences are computed for each band, the multidate signature
Xij of each object can be defined as a vector, with

X ij ¼ ðMij1; N ;Mijb;Sij1; N ;SijbÞ V ð3Þ

where i refers to the object, j (with j=1 or 2) refers to the image
difference considered, and b refers to the number of spectral
bands.

3.3. Multivariate iterative trimming

Using the vectors as defined in Eq. (3), changed objects from
the unchanged ones were separated by a statistical analysis
using an iterative trimming procedure. Trimming is defined as
the removal of extreme values that behave like outliers. The
common purpose of this procedure is to reduce the sensitivity to
outliers for many parameter estimates, such as the sample mean
and variance (Kotz et al., 1988). In the case of a Gaussian
distribution, the trimmed mean is a robust estimation of the
mean that is not affected by outliers. According to Bickel
(1965), this estimator is efficient under a variety of

Fig. 1. General principles of the object-based change detection method (OB-Reflectance).
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circumstances. More details about this technique can be found
in Huber (1972), Hoaglin et al. (1983) and Lee (1995). It is
worth noting that the trimming procedure is applied here in a
slightly different context. While typically used to eliminate
abnormal values, these values need to be kept in our context, as
the corresponding objects are classified as changed.

The object reflectance differences over time are similar for
undisturbed forests because the local forest heterogeneity is
efficiently smoothed out by the combination of image
differencing and image segmentation. Assuming that observed
differences are due to various uncontrolled factors, the
distribution of the multidate signature parameters for un-
changed objects could be reasonably approximated by a
Gaussian distribution (this assertion will be validated from the
results of the analysis). These limited modifications of the
temporal reflectances are also expected to sharply contrast with
the high and heterogeneous reflectance modifications in the
case of forest change. The statistical values for changed objects
thus tend to be located mainly in the head and tail of the
distribution, so that they behave like outliers with respect to
those for unchanged objects.

In this study, the trimming procedure was performed in its
multivariate version, that takes simultaneously into account the
different object statistics appearing in each vector Xij. The
combination of several variables by way of multivariate
analyses strengthened the analysis. Using simultaneously the
object standard deviation of reflectance difference in addition to
the object mean of reflectance difference for all spectral bands,
the capability of detecting changes increases, as e.g., these
changes may affect the various spectral bands to different
extents. As proposed above, let us assume that for unchanged
objects, Xij is Gaussian distributed with mean vector mj and
covariance matrix Σj, so that we can define

Cij ¼ ðX ij−mjÞ V
X−1

j
ðX ij−mjÞfv2ð2bÞ ð4Þ

where Cij is chi-square distributed with 2b degrees of freedom.
We can thus write that

PðCij < v21−að2bÞÞ ¼ 1−a ð5Þ

i.e., for a chosen probability level 1−α (with 1−α=0.99, for
example), we can identify a value χ1−α2 (2b) that Cij will only
exceed with probability α. If α is chosen to be small, a simple
hypothesis test at the 1−αconfidence level consists of
identifying any Cij value that exceeds this threshold as a
potentially outlying value, so that in our context the
corresponding object i is flagged as changed. This procedure
is similar to the approach applied by Ridd and Liu (1998) using
a pixel-based approach, which proved to be efficient to detect
changes in an urban environment. The confidence level 1−α
can be optimised to the application at hand thanks to a training
data set.

Clearly, applying Eq. (4) can only be done if one knows
the corresponding mj and Σj. These can be initially estimated

directly from the whole set of corresponding Xij vectors, but
as this set is precisely expected to contain outlying values,
this could lead to poor estimates. We thus propose to use
Eqs. (4) and (5) in an iterative approach. Initial estimates m̂j

and Σ̂ j are computed from the whole set of objects, and a
first trimming is applied. From the set of objects flagged as
unchanged, new estimates m̂j and Σ̂ j are obtained, and
trimming can be applied again. This iterative procedure is
stopped when no new objects are flagged as changed. Instead
of extracting changed objects in a single step from poor initial
estimates m̂j and Σ̂ j, the selection of outliers thus becomes
finer at each new iteration. An illustration of the iterative
procedure results is given in Fig. 2, where only a single band
has been used for the sake of simplicity; as the number of
iterations increases, the corresponding confidence ellipses
shrink progressively until no more additional changed objects
are identified.

As described above, the whole procedure was only applied
on a single image difference. It was, however, repeated
respectively for both image differences and the results were
combined, in the sense that an object detected as an outlier in
at least one of the statistical tests was considered as “changed”
for the whole change detection process.

4. Experimental design

The proposed object-based methodology was tested on the
SPOT-HRV images in order to assess its performance using
only the NDVI series on one hand (OB-NDVI) and using all of
the 9 reflectance bands on the other hand (OB-Reflectance).
These results were compared to a robust pixel-based method,
i.e., the RGB-NDVI (Sader et al., 2001) and an extension of
this technique, the Multispectral Multidate Classification
(MMC).

Fig. 2. Detection of changed objects from two statistics describing the
reflectance difference (XS03–XS95) for the NIR spectral band, i.e., the mean
(Object Mean) and standard deviation (Object Stdev). The iterative process is
illustrated by the ellipses drawn for iterations 1, 2, 3 and 13 (out of 13 iterations).
Points outside the smallest ellipse (iteration 13) are all considered as changed
objects.
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4.1. Object-based change detections

The multidate segmentation was carried out from the 9
TOA reflectance bands of the SPOT images using equal
weights for all bands. The segmentation parameters wsp and
wcp of Eq. (2) were equal respectively set at 0.5 and 0.5, as we
have no clue about the relative patterns between spectral vs.
shape and between compactness vs. smoothness. The hsc was
set at 5 to obtain image segmentation with a minimum object
size (equal to the Minimum Mapping Unit, the MMU) of 0.5
ha, or 12 pixels of the SPOT-HRV image. This corresponds to
a trade-off between the minimum size of change object which
could be detected and the number of pixels per object required
to compute robust summary statistics.

To compare their respective change detection perfor-
mances, two separate data sets were prepared: (i) NDVI
differences and (ii) TOA reflectance differences. The NDVI
differences were computed from the two NDVI paired images,
i.e., NDVI95–NDVI92 and NDVI03–NDVI95. For each
object obtained from the multidate segmentation, M and S
statistics were extracted from each NDVI difference image, so
that for each object i and difference image j, we could define
the corresponding vector Xij=(Mij,Sij)′. The iterative trimming
procedure was applied to each image difference and the
results of these 2 analyses were combined. Whereas the
confidence level is generally set at 0.99 in statistical tests, a
preliminary optimisation of this parameter was completed to
maximize the overall accuracy of the change detection
algorithm. The appropriate confidence level was thus selected
thanks to an optimisation step based on a training set of 1230
objects. For the NDVI data set, the optimised confidence level
1−α was equal to 0.75. This approach will be named
hereafter Object-Based method using NDVI (OB-NDVI).

Similarly, the same protocol was applied to the reflectance
difference data set (OB-Reflectance) from the two multispec-
tral images differences XS95–XS92 and XS03–XS95, where
each image difference includes 3 difference bands, i.e., the
NIR, Red and Green. For each object i and difference image j,
the corresponding vector is thus Xij=(Mij1,Mij2,Mij3,Sij1,Sij2,
Sij3)V. The trimming procedure was run separately for each
image difference and the results obtained separately for the 2
image differences were combined. The confidence level 1−α
equal to 0.99 for OB-Reflectance was selected by an
optimisation step (see Section 5.3).

4.2. Pixel-based change detections

Using the 3 NDVI bands of the multidate SPOT data set,
the RGB-NDVI technique of Sader et al. (2001) was applied
to produce change maps. The unsupervised ISODATA
clustering algorithm (Richards, 1993) produced 45 multi-
temporal classes which were interactively labelled in binary
format (change vs. no-change) based on the visual interpre-
tation of the color composites without using validation data
set.

Similarly, this technique was extended to a more general
multispectral multidate classification (MMC) using the Green,

Red and NIR bands of the three SPOT images, i.e., 9 bands.
The unsupervised ISODATA classification also subdivided 45
classes interactively labelled into change or no-change.

4.3. Accuracy assessment

Among the various accuracy assessment methods presented
by Biging et al. (1999) and Foody (2002), the change detection
error matrix was chosen and computed for each change map.
According to Zhan et al. (2002), 4 accuracy indices derived
from this error matrix are required to compare these change
detection methods. The overall accuracy is the proportion of
changed and unchanged elements (objects or pixels) that are
correctly classified by the method. The detection accuracy is the
proportion of correctly detected changed elements. The
omission error is the proportion of omitted changed elements,
while the commission error is the proportion of falsely detected
unchanged elements. κ analysis (Cohen, 1960) uses the overall
Kappa and the per-class Kappa statistic, which is a measure of
accuracy or agreement based on the difference between the error
matrix and chance agreement (Rosenfield & Fitzpatrick-Lins,
1986).

The comparison between different category of change
detection techniques requires three types of validation
approach: (i) a polygon-wise validation for the object-based
method, (ii) a pixel-wise for the pixel-based method and (iii) a
polygon-wise for the pixel-based method. First, for a polygon-
based mapping output, any pixel-based accuracy assessment
would tend to underestimate the map accuracy (Biging et al.,
1999). The proposed object-based method was thus evaluated in
a polygon-wise way. Each object randomly selected for the
accuracy assessment was compared to the corresponding forest
parcel of the validation data set. The change label (change or no-
change) was compared to the change attribute of the reference
data. Given that the selected MMU is 0.5 ha, an object is
validated as changed if more than 0.5 ha of its area is covered by
a change forest stand of the validation data set. Second, the
multidate classification is a pixel-based change detection
method and was evaluated by a pixel-wise assessment. Third,
in order to directly compare the two change detection methods,
the change maps obtained by multidate classification were
assessed not only pixel-wise but also polygon-wise, following
the example of Zhan et al. (2002). For the polygon-wise
assessment of the pixel-based method, the change attribute of
each polygon was derived from the area of the changed pixels.
If this changed area is higher than the MMU defined at 0.5 ha,
the polygon is classified as changed.

Two sources of reference data were considered as comple-
mentary for the method assessment. The first reference data set
was based on the visual interpretation of each one of the 1000
objects randomly selected out of the about 22,000 objects
processed by the algorithm. From the false color composite of
each date, each of the 1000 objects was interpreted as changed
or unchanged. The second reference data set consists of
approximately 325 randomly selected objects where forest
inventory information was available. Not based on these
satellite images, this independent data set strengthened the
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accuracy assessment. Because of random selection, changed vs.
unchanged samples were not evenly distributed and the
proportions of changed objects were equal to 33% for visual
interpretation and 20% for forest inventory.

5. Results

Four change maps have been produced based on the 4
change detection techniques, namely RGB-NDVI, OB-NDVI,
MMC and OB-Reflectance. From the performance indices
assessment, the method comparison has been done separately
for each input data, namely the NDVI and the reflectance.
Depending of the change detection objectives, the proposed
object-based method can been tuned by a preliminary
optimisation step, presented for OB-Reflectance in Section
5.3. An example of the OB-Reflectance change map is
presented in Fig. 3 beside the corresponding multi-year images.

5.1. Methods comparison using NDVI

Table 1 shows the accuracy assessment results based on four
performance indices computed from OB-NDVI and RGB-
NDVI change maps using both validation approaches and both
reference data set. The overall accuracy of both change maps
was similar (about 83%) but the high proportion of unchanged
objects made this index less appropriate to evaluate the change
detection algorithm. The detection accuracy which is a more
informative index to assess the change detection performances

was much higher for OB-NDVI (65%) than for RGB-NDVI
(51%). The efficiency of this algorithm was also reported by the
omission error (35% vs. 49%) and the commission error (18%
vs. 29%). For the polygon-wise validation, the RGB-NDVI
detection accuracy was higher whereas the overall accuracy was
lower. For the change class, the Kappa statistic was higher for
OB-NDVI (0.52) than for RGB-NDVI (0.40), and the overall
kappas were respectively 0.61 vs. 0.49. The independent
reference data set derived from the forest inventory confirmed
these results. The detection accuracy was still higher for the
object-based method (66% vs. 49%).

5.2. Methods comparison using reflectance data

Table 2 summarizes the validation results for both change
detection methods using all calibrated reflectance channels, i.e.,
OB-Reflectance and MMC. While the performances of the
pixel-based method remained about the same as when using
NDVI, the object-based accuracy was improved using
reflectances. Indeed, the OB-Reflectance overall accuracy
was as high as 93% whatever the validation source. Similarly,
the detection accuracy was found superior to 91% for the
proposed technique, while omission and commission errors
were reduced. The MMC commission errors were low (16%)
but can be considered as a logical consequence of the 51%
omission errors. The polygon-wise validation of the multidate
classification (MMC) again provided detection accuracy better
than the pixel-wise. The increase in commission error was

SPOT 1992 SPOT 1995 SPOT 2003 Change map 

Fig. 3. False color composite subsets (RGB=NIR–Red–Green) of each image of the SPOT time series (1992–1995–2003) overlaid by the multidate segmentation
result. Bright objects are clear-cuts while regions in reddish grey are regenerating areas. The hatched regions on the change map correspond to detected changed objects
by the OB-Reflectance method.

Table 1
Performance indices for both change detection methods using NDVI, as
estimated by two validation approaches, i.e., polygon-wise and pixel-wise, and
two sources of reference data, i.e., visual interpretation (n=1000) and forest
inventory database (n=325, between brackets)

Change detection method OB-NDVI RGB-NDVI RGB-NDVI

Validation approach Polygon-wise Polygon-wise Pixel-wise

Detection accuracy (%) 64.6 (66.2) 64.3 (58.8) 50.6 (49.2)
Omission error (%) 35.4 (33.8) 35.7 (41.2) 49.4 (50.8)
Commission error (%) 18.1 (26.2) 39.0 (56.0) 28.6 (32.6)
Overall accuracy (%) 83.7 (88.0) 74.8 (75.7) 82.7 (86.6)
Kappa: change class 0.52 (0.58) 0.45 (0.43) 0.40 (0.41)
Kappa: no-change class 0.73 (0.67) 0.42 (0.29) 0.62 (0.60)
Overall kappa 0.61 (0.62) 0.44 (0.35) 0.49 (0.49)

Table 2
Performance indices for both change detection methods using Reflectances, as
estimated by two validation approaches, i.e., polygon-wise and pixel-wise, and
two sources of reference data, i.e., visual interpretation (n=1000) and forest
inventory database (n=325, between brackets)

Change detection method OB-Reflectance MMC MMC

Validation technique Polygon-wise Polygon-wise Pixel-wise

Detection accuracy (%) 91.5 (91.2) 54.9 (70.6) 49.4 (62.7)
Omission error (%) 8.5 (8.8) 45.1 (29.4) 50.6 (37.3)
Commission error (%) 13.0 (21.5) 24.7 (32.4) 15.9 (17.8)
Overall accuracy (%) 92.7 (92.9) 79.3 (86.8) 85.1 (90.9)
Kappa: change class 0.87 (0.88) 0.41 (0.62) 0.41 (0.57)
Kappa: no-change class 0.81 (0.73) 0.63 (0.59) 0.79 (0.78)
Overall kappa 0.84 (0.80) 0.50 (0.61) 0.54 (0.66)
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offset by the decrease in omission error, so the overall accuracy
remains about the same. The two per-class κ were similar for
the OB-Reflectance (0.87 vs. 0.81) whereas the κ for the
change class was lower than the no-change class for MMC
(0.41 vs. 0.79). The OB-Reflectance overall kappa was much
higher than using the MMC method. The independent reference
data set derived from the forest inventory also confirmed these
results. The OB-Reflectance detection accuracy was still higher
(91% vs. 63%).

5.3. OB-Reflectance optimisation

Due to its statistical design, the object-based method can be
optimised according to the purpose of the change detection.
Indeed, the alpha parameter (α) in the statistical test defines the
confidence level 1−α and can be tuned either to maximize one
of the performance indices or to balance both of them. From a
subset of 1230 objects (different from the validation set), the
four detection performance indices were computed for different
α values using the OB-Reflectance (Fig. 4). For α=0.002 up to
0.05, the omission error decreased whereas the commission
error logically increased. The detection accuracy increased with
α, reaching 100% accuracy for α=0.05. In this case, the
commission errors were high (about 52%) corresponding to
many false change alerts. Whereas the overall accuracy was still
the same for α=0.002 up to 0.02, the detection accuracy
variation was about 20%. Using the reflectance, the highest
overall accuracy combining both errors was reached for
α=0.01.

These tuning capabilities allow the user to customize the
change detection method with respect to the project
objectives. For forest map updating that includes a field
visit of the changed areas, the detection accuracy would be
maximized so that a high α value, e.g., α=0.03, should be
preferred. The selection of the confidence level value could
be tuned depending of the human resources available for
field surveys. In contrast, the maximisation of the overall
accuracy of the change detection algorithm should be

preferred for other applications. For example, the forest
change for biodiversity or carbon stocks studies can be
estimated by this change detection technique using an alpha
value (α) below 0.01 to balance omission and commission
errors.

6. Discussion

As outlined above, the proposed OB-Reflectance method
combines the advantages and strengths of three methodological
aspects; i.e., image segmentation, image differencing and
statistical testing.

Through the object-based approach, the initial multidate
segmentation process insures the quality of the multispectral
data to be submitted to iterative trimming. Indeed, the object
delineation combined the spectral, temporal and spatial
information to create consistent units of interest for statistical
analysis. The segmentation is also less sensitive to misregistra-
tion errors than traditional pixel-based analysis methods
(Mäkelä & Pekkarinen, 2001) and reduces the change detection
processing time given that there are much fewer objects than
pixels. Moreover, the object boundaries derived directly from
the satellite images are more consistent than using GIS data
which sometimes have non-reconcilable boundaries when
overlaid on these images. Based on these objects, the
subsequent statistical analyses are thus more robust and the
change detection performances are increased. It is worth noting
that the objects defined by the multidate segmentation do not
necessarily correspond to real stands on the field. In particular,
the selection of only one segmentation scale for the analysis
constrains the object size and may sometimes prevent the
delineation of either very large stands or spatially limited
changes. However, this multidate segmentation was found to be
better than a combination of independent segmentations on each
image that easily leads to over-segmentation with sliver
polygons.

The multidate image comparison was performed using
image differencing. Many change detection studies have been
based on the single vegetation index NDVI to reduce the
differences in illumination and topographic effects (Hayes &
Sader, 2001; Lyon et al., 1998; Wilson & Sader, 2002). While
reflectance differencing is a well-known technique for change
detection, the comparison of these reflectance differences by
way of iterative trimming makes this approach very robust,
even without accurate radiometric calibration. Moreover, due
to the sun synchronous character of the SPOT satellite,
topographic effects are supposed to be constants between
images. It should be noted, however, that, after the cloud
coverage screening, the method assumes that atmospheric
effects are homogeneous over the whole study area.
Heterogeneous atmospheric effects may require a preliminary
stratification of the region or indeed, corrections of these
effects (Song et al., 2001).

The use of a statistical procedure makes the method scene-
independent. The multidate reflectance is considered as very
homogeneous for unchanged objects which are very numerous
compared to changed ones. The detection of these rare objects

Fig. 4. Evolution of 4 performance indices as a function of the alpha parameter
(α) defining the confidence level (1−α) for the OB-Reflectance method.
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having abnormal multidate reflectance is done thanks to the
combination of both statistics, M and S, from the object
multidate signature. Whereas only the object mean (M) is
computed in several object-based methods (Saksa et al., 2003;
Wulder et al., 2004), the addition of the object standard
deviation (S) was found to be very efficient. Moreover, the
comparison of algorithm performance in this study illustrated
that the most relevant input data for change detection are the
whole set of spectral channels (NIR, Red and Green) rather than
a combination of these channels in the NDVI. Changed objects
are better identified when the spectral band number increases as
a land cover change could affect only one spectral band.

The change detection results of the proposed method were
found higher than many studies reported in the literature.
Indeed, the OB-Reflectance method has achieved an overall
accuracy of 93% and an overall kappa of 0.84. The particular
unsupervised multidate classification developed by Häme et
al. (1998) was found less efficient for change extraction
(respectively 66% and 0.21). Hayes and Sader (2001) have
assessed three different methods using the same performance
indices: PCA method (74% and 0.69), NDVI differencing
(82% and 0.79) and RGB-NDVI (85% and 0.83). Using
change vector analysis, Lunetta et al. (2004) achieved quite
good performances (86% and 0.55). High results (92% and
0.87) were obtained by Rogan et al. (2003) using classifica-
tion trees which can be considered as scene-dependent. For
the RGB-NDVI method, the performance achieved by this
study corresponds to those from the literature (Hayes &
Sader, 2001). They were even higher (83% and 0.49) than the
64% and 0.29 achieved by Wilson and Sader (2002, Table 8)
using 3 NDVI bands.

The comparison between object-based and pixel-based is a
difficult task. Using both polygon-wise and pixel-wise valida-
tions, the analysis of our performance showed two particular
trends. First, the polygon-wise validation of the multidate
classification provides lower overall accuracy than the pixel-
wise. In the polygon-wise validation, objects with pixels
classified as ‘changed’ covering an area larger than the
Minimum Mapping Unit (MMU) are considered as changed.
So, omission errors are reduced whereas commission errors are
more numerous, thus reducing the overall accuracy. This
polygon-wise validation is thus not suitable for accuracy
assessment of a pixel-based method except for the sake of
comparison between pixel-based and polygon-based method.
Secondly, the overall accuracy is slightly higher using forest
inventory as reference whereas commission errors are more
frequent for all detection methods. The increase of false change
alerts can be explained by the larger proportion of unchanged
forest stands in the forest inventory.

This approach has proved to be very efficient for forest
change extraction and offers the advantage of being an
automated procedure. Indeed, no predefined threshold for
reflectance difference channels was required in this analysis.
There were only two parameters to be set by the user: (i) the
scale parameter hscale and (ii) the confidence level 1−α of the
statistical test. The first was based on the MMU expected from
the change analysis. The second relied on the proportion of

changed vs. unchanged objects. Although the default parameter
settings already provide satisfactory results, the fine-tuning
capabilities offered by the method allow the user to optimise it
with respect to the considered application. In our study, this
level of confidence was tuned at 0.99 for the OB-Reflectance by
an optimisation procedure on overall accuracy.

Whereas most of the change detection studies cope with
change extraction and change labelling analyses, this study was
focused mainly on the extraction of change regions. From
change detection results, the visual interpretation can be focused
on the rare changed objects to determine the type of land cover
change. Moreover, the performance of extraction can be
assessed independently of the change labelling. It is important
to mention that all types of forest changes, e.g., clear-cutting,
reforestation, etc., were detected using the same processing
algorithm and that no very precise measurement of their size or
shapes have been done.

7. Conclusions

The object-based change detection method proposed here
proved to be very efficient to identify forest land cover
changes in both deciduous and coniferous stands. A detection
accuracy higher than 90% and an overall kappa higher than
0.80 were achieved using a SPOT multidate data set covering
a 10-years time span. This technique can be considered scene-
independent in the sense that no predefined threshold for
reflectance difference channels of the multidate image was
required. Moreover, the fine-tuning capabilities of a single
algorithm parameter allow the user to customize the change
detection technique according to its specific objectives. The
change detection results achieved by the object-based method
were higher than pixel-based methods, regardless of the
validation data source.

Given its scene-independent property and its sound statistical
formulation, the proposed object-based method can be easily
extended to other kinds of data, other regions, or even for
monitoring surface changes in non-forested areas. Other
experiments using various sensors in various environments
are needed in order to extend this very promising method for
land surface monitoring and map updating.

Whereas this study was focused mainly on the extraction of
change regions without distinction about the nature of these
changes, it could be very useful to address the problem of
change type classification inside the procedure itself. Further
theoretical developments are still needed for this. Improving the
exact delineation of detected changed stands is another aspect
that could also be helpful to develop in the future, especially if
the aim is to obtain quantitative assessments about the change
area.

Acknowledgements

This research has been funded by the Belgian National Fund
for Scientific Research (FNRS) by the way of an FRIA grant.
The satellite data have been made available by the Belgian
Science Policy Office (BSPO). The authors wish to thank the

9B. Desclée et al. / Remote Sensing of Environment 102 (2006) 1–11



“Division of Nature and Forest" (DNF) for providing them with
the forest inventory GIS data and the “National Geographic
Institute” (NGI) for the Top10v-GIS data used for the field
survey. The authors thank also the reviewers for their
constructive comments and remarks.

References

Asner, G. P., Keller, M., Pereira, R., & Zweede, J. C. (2002). Remote sensing of
selective logging in Amazonia—Assessing limitations based on detailed
field observations, Landsat ETM+, and textural analysis. Remote Sensing of
Environment, 80, 483−496.

Atkinson, P. M., & Lewis, P. (2000). Geostatistical classification for remote
sensing: An introduction. Computers and Geosciences, 26, 361−371.

Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: An optimization
approach for high quality multiscale image segmentation. In J. Strbl, & T.
Blaschke (Eds.), Angewandte Geographische Informationsverarbeitung
(pp. 12−23). Heidelberg: Wichmann.

Bickel, P. J. (1965). On some robust estimates of location. The Annals of
Mathematical Statistics, 36(3), 847−858.

Biging, G. S., Colby, D. R., & Congalton, R. G. (1999). Sampling systems for
change detection accuracy assessment. In R. S. Lunetta, & C. D. Elvidge
(Eds.), Remote sensing change detection: Environmental monitoring
methods and applications (pp. 281−308). Chelsea: Ann Arbour Press.

Bruzzone, L., & Prieto, D. F. (2000). Automatic analysis of the difference image
for unsupervised change detection. IEEE Transactions on Geoscience and
Remote Sensing, 38, 1171−1182.

Büttner, G., Feranec, F., and Jaffrain, G. (2002). Corine land cover update
2000. Technical report. Copenhagen: European Environment Agency.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20, 37−46.

Coppin, P. R., & Bauer, M. E. (1994). Processing of multitemporal Landsat TM
imagery to optimize extraction of forest cover change features. IEEE
Transactions on Geoscience and Remote Sensing, 32, 918−927.

Coppin, P. R., & Bauer, M. E. (1995). The potential contribution of pixel-based
canopy change information to stand-based forest management in the
northern U.S. Journal of Environmental Management, 44, 69−82.

Coppin, P. R., & Bauer, M. E. (1996). Digital change detection in forest
ecosystems with remote sensing imagery. Remote Sensing Reviews, 13,
207−234.

de Wasseige, C., & Defourny, P. (2004). Remote sensing of selective logging
impact for tropical forest management. Forest Ecology and Management,
188, 161−173.

FAO (2001). Global forest resources assessment 2000. Report No. FAO Forestry
Paper 140 (Food and Agriculture Organization of the United Nations,
Rome).

Flanders, D., Hall-Beyer, M., & Pereverzoff, J. (2003). Preliminary evaluation
of eCognition object-based software for cut block delineation and feature
extraction. Canadian Journal of Remote Sensing, 29(4), 441−452.

Foody, G. M. (2002). Status of land cover classification accuracy assessment.
Remote Sensing of Environment, 80, 185−201.

Foody, G. M. (2003). Remote sensing of tropical forest environments: Towards
the monitoring of environmental resources for sustainable development.
International Journal of Remote Sensing, 24, 4035−4046.

Fung, T., & LeDrew, E. (1988). The determination of optimal threshold levels
for change detection using various accuracy indice. Photogrammetric
Engineering and Remote Sensing, 54, 1449−1454.

Hall, R. J., Crown, P. H., & Titus, S. J. (1984). Change detection methodology
for aspen defoliation with Landsat MSS digital data. Canadian Journal of
Remote Sensing, 10, 135−142.

Häme, T. (1991). Spectral interpretation of changes in forest using satellite
scanner images. Acta forestalia fennica, vol. 222. Helsinki: The Society of
Forest in Finland – The Finnish Forest Research Institute.

Häme, T., Heiler, I., & Miguel-Ayanz, J. (1998). An unsupervised change
detection and recognition system for forestry. International Journal of
Remote Sensing, 19, 1079−1099.

Hayes, D. J., & Sader, S. A. (2001). Comparison of change-detection
techniques for monitoring tropical forest clearing and vegetation regrowth
in a time series. Photogrammetric Engineering and Remote Sensing, 67,
1067−1075.

Heikkonen, J., & Varjo, J. (2004). Forest change detection applying Landsat
Thematic Mapper difference features: A comparison of different classifiers
in boreal forest conditions. Forest Science, 50, 579−588.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and
exploratory data analysis. New York: Wiley.

Huber, P. J. (1972). The 1972 Wald lecture robust statistics: A review. The
Annals of Mathematical Statistics, 43(4), 1041−1067.

Jin, S. M., & Sader, S. A. (2005). Comparison of time series tasseled cap
wetness and the normalized difference moisture index in detecting forest
disturbances. Remote Sensing of Environment, 94, 364−372.

Kayitakire, F., Giot, P., & Defourny, P. (2002). Automated delineation of the
forest stands using digital color orthophotos: Case study in Belgium.
Canadian Journal of Remote Sensing, 28, 629−640.

Kotz, S., Johnson, N. L., & Read, C. (1988). Encyclopedia of statistical
sciences. New York: Wiley.

Lee, S. (1995). A trimmed mean of location of an AR(∞) stationary process.
Journal of Statistical Planning and Inference, 48, 131−140.

Le Hégarat-Mascle, S., & Seltz, R. (2004). Automatic change detection by
evidential fusion of change indices. Remote Sensing of Environment, 91,
390−404.

Li, X., & Yeh, A. G. O. (1998). Principal component analysis of stacked multi-
temporal images for the monitoring of rapid urban expansion in the Pearl
River Delta. International Journal of Remote Sensing, 19, 1501−1518.

Liang, S., Fallah-Adl, H., Kalluri, S., Jaja, J., Kauffman, Y. J., & Townshend, J.
R. G. (1997). An operational atmospheric correction algorithm for Landsat
Thematic Mapper imagery over the land. Journal of Geophysical Research,
102, 173−186.

Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image
interpretation (4th ed.). New York: Wiley.

Lobo, A. (1997). Image segmentation and discriminant analysis for the
identification of land cover units in ecology. IEEE Transactions on
Geoscience and Remote Sensing, 35, 1136−1145.

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection
techniques. International Journal of Remote Sensing, 25, 2365−2407.

Lunetta, R. S., Johnson, D. M., Lyon, J. G., & Crotwell, J. (2004). Impacts of
imagery temporal frequency on land-cover change detection monitoring.
Remote Sensing of Environment, 89, 444−454.

Lyon, J., Yuan, D., Lunetta, R., & Elvidge, C. (1998). A change detection
experiment using vegetation indices. Photogrammetric Engineering and
Remote Sensing, 64, 143−150.

Macomber, S. A., & Woodcock, C. E. (1994). Mapping and monitoring conifer
mortality using remote-sensing in the lake Tahoe basin. Remote Sensing of
Environment, 50, 255−266.

Mäkelä, H., & Pekkarinen, A. (2001). Estimation of timber volume at the sample
plot level by means of image segmentation and Landsat TM imagery.
Remote Sensing of Environment, 77, 66−75.

Richards, J. A. (1993). Remote sensing digital image analysis. An introduction
(2nd ed.). Berlin: Springer-Verlag. 340 pp.

Ridd, M. K., & Liu, J. J. (1998). A comparison of four algorithms for change
detection in an urban environment. Remote Sensing of Environment, 63,
95−100.

Rogan, J., & Chen, D. M. (2004). Remote sensing technology for mapping and
monitoring land-cover and land-use change. Progress in Planning, 61,
301−325.

Rogan, J., Miller, J., Stow, D., Franklin, J., Levien, L., & Fischer, C. (2003).
Land-cover change monitoring with classification trees using Landsat TM
and ancillary data. Photogrammetric Engineering and Remote Sensing, 69,
793−804.

Rosenfield, G. H., & Fitzpatrick-Lins, A. (1986). A coefficient of agreement as a
measure of thematic classification accuracy. Photogrammetric Engineering
and Remote Sensing, 52, 223−227.

Sader, S. A., Hayes, D. J., Hepinstall, J. A., Coan, M., & Soza, C. (2001). Forest
change monitoring of a remote biosphere reserve. International Journal of
Remote Sensing, 22(10), 1937−1950.

10 B. Desclée et al. / Remote Sensing of Environment 102 (2006) 1–11



Saksa, T., Uuttera, J., Kolstrom, T., Lehikoinen, M., Pekkarinen, A., & Sarvi, V.
(2003). Clear-cut detection in boreal forest aided by remote sensing.
Scandinavian Journal of Forest Research, 18, 537−546.

Saura, S. (2002). Effects of minimum mapping unit on land cover data spatial
configuration and composition. International Journal of Remote Sensing,
23, 4853−4880.

Silapaswan, C. S., Verbyla, D. L., & McGuire, A. D. (2001). Land cover change
on the Seward Peninsula: The use of remote sensing to evaluate the potential
influences of climate warming on historical vegetation dynamics. Canadian
Journal of Remote Sensing, 27, 542−554.

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A.
(2001). Classification and change detection using Landsat TM data: When
and how to correct atmospheric effects? Remote Sensing of Environment, 75,
230−244.

Sunar, F. (1998). An analysis of changes in a multi-date data set: a case study in
the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing,
19, 225−235.

Townshend, J. R. G., Huang, C., Kalluri, S. N. V., DeFries, R. S., Liang, S., &
Yang, K. (2000). Beware of per-pixel characterization of land cover.
International Journal of Remote Sensing, 21, 839−843.

Varjo, J. (1996). Controlling continuously updated forest data by satellite remote
sensing. International Journal of Remote Sensing, 17, 43−67.

Walter, V. (2004). Object-based classification of remote sensing data for change
detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58,
225−238.

Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using
multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80,
385−396.

Wulder, A. A., Skakun, R. S., Kurz, W. A., & White, J. C. (2004). Estimating
time since forest harvest using segmented Landsat ETM+ imagery. Remote
Sensing of Environment, 93, 179−187.

Zhan, Q., Wang, J., Peng, X., Gong, P., & Shi, P. (2002). Urban built-up land
change detection with road density and spectral information from multi-
temporal Landsat TM data. International Journal of Remote Sensing, 23,
3057−3078.

11B. Desclée et al. / Remote Sensing of Environment 102 (2006) 1–11


	Forest change detection by statistical object-based method
	Introduction
	Study site and data
	Object-based methodology
	Multidate segmentation
	Object multidate signature
	Multivariate iterative trimming

	Experimental design
	Object-based change detections
	Pixel-based change detections
	Accuracy assessment

	Results
	Methods comparison using NDVI
	Methods comparison using reflectance data
	OB-Reflectance optimisation

	Discussion
	Conclusions
	Acknowledgements
	References


